

RPUG 2018 CONFERENCE – SOUTH DAKOTA 30 Years On The Road To Progressively Better Data

Rapid City September 18-21

Where Does Safety Fit In Pavement Evaluation?

By Jerry Daleiden, P.E. ARRB Group Inc.

Three Objectives:

- 1. Review challenges/pitfalls of traditional assessments
- Share changes in technology (making more comprehensive assessments now possible)
- 3. Review potential implications

History

- 1st International Skid Prevention Conference held in the USA, 1959
- American Society for Testing and Materials,

ASTM committee E-17 on Skid Resistance, formed in 1960

Traditional Safety Measurements

Standard Safety Analysis Methods

Safety Performance Functions (SPF), relate crashes to several factors:

X₁, X₂, ..., X_n Explanatory variables

- ✓ *P*: Number of crashes on segment L
- ✓ *AADT*: Traffic count
- ✓ X_i: Friction, Texture, Curvature, crossslope, grade, etc.

$$P = L \times e^{\beta_o + \ln(AADT)\beta_1 + X_{1+i}\beta_{1+j}}$$

Friction Assessment

Friction & Texture

Microtexture

Friction & Texture

Transverse Profile Analysis

1. Calculate Cross-slope

Transverse Profile Analysis

2. Calculate Percent Deformation:

Transverse Profile Analysis

3. Calculate Rut Depths

"Because the intensity of the polishing process increases markedly with tread element slip, all other factors being equal, the lowest friction levels are found on high-speed roads, curves, and approaches to intersections; in short, in locations at which high friction values are needed most."

NCHRP Report 37, 1967

Friction Demand – Investigatory Levels (UK)

Site category and definition		Investigatory level (50 or 80 km/h)							
		0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65
А	Motorway								
В	Dual carriageway non-event								
С	Single carriageway non-event								
Q	Approaches to and across minor and major								
	junctions, approaches to roundabouts								
K	Approaches to pedestrian crossings and other								
	high risk situations								
R	Roundabout								
G1	Gradient 5-10% longer than 50m								
G2	Gradient >10% longer than 50m								
S1	Bend radius < 500m - dual carriageway								
S2	Bend radius < 500m - single carriageway								

Continuous vs. Sampled

Standard friction testing in the USA is:

- "Sample" based
- Locked Wheel Skid Testing (LWST)

Pavement conditions however, vary along roadways

- Density (Intelligent Compaction, Infrared Technology, GPR)
- Structural Integrity (TSD, GPR)
- Segregation (Texture)
- Ride

Road inspection technology

Hawkeye 2000 system integration

- high resolution and calibrated images
- geo-referenced
- Gipsitrac (IMU)
 - For objective measure of horizontal curvature
- fully integrated outputs
- customised safety rating software
- collection of roughness, rutting and texture data

Calibrated images

Stront Centre Camera(+ Front Right Camera+ Front Left Camera)

30 years on the Road To Progressively Better Data

Continuous Friction Measurement

- Continuous friction measurement
- 15 to 55 mph
- Typically 150 lane miles per day

Continuous Friction Measurement

- Skewed tire (20°- 34% slip)
- Dynamic vertical load system
- Continuous tire pressure monitoring
- Dynamic speed controlled water system
- Ambient air temperature monitoring
- Tire temperature monitoring

Full compliance with BS 7941-1:2006.

Continuous Friction Measurement

Rubber Tire Slip

• measuring **micro**-texture continuously

Laser based texture measurement system

• measuring macro-texture continuously

Both Wheel Paths Simultaneously

Additional Assessment Capabilities

+ GNNS DGPS geospatial location

Network level data, project level detail

Pavement Conditions Vary

Continuous properties needed

Averages over network level segments

• Lose something in the summation.

Spatial Data Representation

- Direct spatial exports
 Imbedded data detail
- URL links

the state is

All data in one place...for all time

DPTI 2009 - Road ID: 1503 Olympic Dam - Pimba Left 34.500km L1 [Front Center] Lat/Lon: -30.76672, 136.90787

Collected: 18 Jun 2009

hawkeye:::3564841899970:34.524373365698025

9 years ago in 2009

4 years ago in 2014

*

Preliminary Conclusions

Measuring friction continuously, especially when complemented by:

- + road geometry + imagery
 + texture + rutting
 + traffic + crash data
- ✓ Provides a more effective method for identifying the most critical sections
- ✓ Allow for focused safety improvement efforts on higher risk locations, such as:
 - intersections and
 - curves.

Comprehensive Assessment

Questions

- How can network level pavement evaluation better support safety assessments decisions?
- What are the perceived limitations and/or potential approaches for mitigation?
- What additional applications for these new tools merit consideration?

